Copied to
clipboard

G = C23.F5order 160 = 25·5

The non-split extension by C23 of F5 acting via F5/C5=C4

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.F5, Dic5.4D4, C5⋊(C4.D4), C22.F51C2, C22.5(C2×F5), (C22×C10).4C4, (C22×D5).2C4, C2.11(C22⋊F5), C10.11(C22⋊C4), (C2×Dic5).24C22, (C2×C5⋊D4).8C2, (C2×C10).12(C2×C4), SmallGroup(160,88)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C23.F5
C1C5C10Dic5C2×Dic5C22.F5 — C23.F5
C5C10C2×C10 — C23.F5
C1C2C22C23

Generators and relations for C23.F5
 G = < a,b,c,d,e | a2=b2=c2=d5=1, e4=c, ab=ba, ac=ca, ad=da, eae-1=abc, ebe-1=bc=cb, bd=db, cd=dc, ce=ec, ede-1=d3 >

2C2
4C2
20C2
2C22
4C22
5C4
5C4
10C22
20C22
2C10
4D5
4C10
5C23
5C2×C4
10C8
10D4
10C8
10D4
2D10
2C2×C10
4D10
4C2×C10
5C2×D4
5M4(2)
5M4(2)
2C5⋊D4
2C5⋊C8
2C5⋊C8
2C5⋊D4
5C4.D4

Character table of C23.F5

 class 12A2B2C2D4A4B58A8B8C8D10A10B10C10D10E10F10G
 size 11242010104202020204444444
ρ11111111111111111111    trivial
ρ2111-1-1111-11-11-1-1111-1-1    linear of order 2
ρ3111-1-11111-11-1-1-1111-1-1    linear of order 2
ρ411111111-1-1-1-11111111    linear of order 2
ρ5111-11-1-11-iii-i-1-1111-1-1    linear of order 4
ρ6111-11-1-11i-i-ii-1-1111-1-1    linear of order 4
ρ71111-1-1-11-i-iii1111111    linear of order 4
ρ81111-1-1-11ii-i-i1111111    linear of order 4
ρ922-2002-22000000-2-2200    orthogonal lifted from D4
ρ1022-200-222000000-2-2200    orthogonal lifted from D4
ρ114-400000400000000-400    orthogonal lifted from C4.D4
ρ12444-4000-1000011-1-1-111    orthogonal lifted from C2×F5
ρ134444000-10000-1-1-1-1-1-1-1    orthogonal lifted from F5
ρ1444-40000-100005-511-1-55    orthogonal lifted from C22⋊F5
ρ1544-40000-10000-5511-15-5    orthogonal lifted from C22⋊F5
ρ164-400000-1000053+2ζ5+154+2ζ53+15-5152+2ζ5+154+2ζ52+1    complex faithful
ρ174-400000-1000052+2ζ5+153+2ζ5+1-55154+2ζ52+154+2ζ53+1    complex faithful
ρ184-400000-1000054+2ζ53+154+2ζ52+1-55153+2ζ5+152+2ζ5+1    complex faithful
ρ194-400000-1000054+2ζ52+152+2ζ5+15-5154+2ζ53+153+2ζ5+1    complex faithful

Smallest permutation representation of C23.F5
On 40 points
Generators in S40
(1 7)(2 4)(3 5)(6 8)(9 35)(10 40)(11 33)(12 38)(13 39)(14 36)(15 37)(16 34)(17 27)(18 28)(19 25)(20 26)(21 31)(22 32)(23 29)(24 30)
(2 6)(4 8)(10 14)(12 16)(17 21)(19 23)(25 29)(27 31)(34 38)(36 40)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)
(1 11 24 32 35)(2 25 12 36 17)(3 37 26 18 13)(4 19 38 14 27)(5 15 20 28 39)(6 29 16 40 21)(7 33 30 22 9)(8 23 34 10 31)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)

G:=sub<Sym(40)| (1,7)(2,4)(3,5)(6,8)(9,35)(10,40)(11,33)(12,38)(13,39)(14,36)(15,37)(16,34)(17,27)(18,28)(19,25)(20,26)(21,31)(22,32)(23,29)(24,30), (2,6)(4,8)(10,14)(12,16)(17,21)(19,23)(25,29)(27,31)(34,38)(36,40), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40), (1,11,24,32,35)(2,25,12,36,17)(3,37,26,18,13)(4,19,38,14,27)(5,15,20,28,39)(6,29,16,40,21)(7,33,30,22,9)(8,23,34,10,31), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)>;

G:=Group( (1,7)(2,4)(3,5)(6,8)(9,35)(10,40)(11,33)(12,38)(13,39)(14,36)(15,37)(16,34)(17,27)(18,28)(19,25)(20,26)(21,31)(22,32)(23,29)(24,30), (2,6)(4,8)(10,14)(12,16)(17,21)(19,23)(25,29)(27,31)(34,38)(36,40), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40), (1,11,24,32,35)(2,25,12,36,17)(3,37,26,18,13)(4,19,38,14,27)(5,15,20,28,39)(6,29,16,40,21)(7,33,30,22,9)(8,23,34,10,31), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40) );

G=PermutationGroup([[(1,7),(2,4),(3,5),(6,8),(9,35),(10,40),(11,33),(12,38),(13,39),(14,36),(15,37),(16,34),(17,27),(18,28),(19,25),(20,26),(21,31),(22,32),(23,29),(24,30)], [(2,6),(4,8),(10,14),(12,16),(17,21),(19,23),(25,29),(27,31),(34,38),(36,40)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40)], [(1,11,24,32,35),(2,25,12,36,17),(3,37,26,18,13),(4,19,38,14,27),(5,15,20,28,39),(6,29,16,40,21),(7,33,30,22,9),(8,23,34,10,31)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40)]])

C23.F5 is a maximal subgroup of
C5⋊C2≀C4  C22⋊C4⋊F5  (C22×C4)⋊F5  C242F5  (C4×D5).D4  (C2×D4).9F5  D5⋊(C4.D4)  Dic5.D12  C5⋊(C12.D4)
C23.F5 is a maximal quotient of
C5⋊(C23⋊C8)  C22.F5⋊C4  (C2×D4).F5  Dic5.SD16  (C2×Q8).F5  Dic5.Q16  C24.F5  Dic5.D12  C5⋊(C12.D4)

Matrix representation of C23.F5 in GL4(𝔽41) generated by

183500
62300
23201835
3518623
,
1000
0100
10400
3535040
,
40000
04000
00400
00040
,
64000
1000
2923535
140640
,
10390
3535039
123400
52766
G:=sub<GL(4,GF(41))| [18,6,23,35,35,23,20,18,0,0,18,6,0,0,35,23],[1,0,1,35,0,1,0,35,0,0,40,0,0,0,0,40],[40,0,0,0,0,40,0,0,0,0,40,0,0,0,0,40],[6,1,29,14,40,0,2,0,0,0,35,6,0,0,35,40],[1,35,12,5,0,35,3,27,39,0,40,6,0,39,0,6] >;

C23.F5 in GAP, Magma, Sage, TeX

C_2^3.F_5
% in TeX

G:=Group("C2^3.F5");
// GroupNames label

G:=SmallGroup(160,88);
// by ID

G=gap.SmallGroup(160,88);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,24,121,188,86,579,2309,1169]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^5=1,e^4=c,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*b*c,e*b*e^-1=b*c=c*b,b*d=d*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^3>;
// generators/relations

Export

Subgroup lattice of C23.F5 in TeX
Character table of C23.F5 in TeX

׿
×
𝔽